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staggered grids [8]. The major drawback in these schemes is
from the staggered grid allocation. Using different gridsA finite-volume/Newton’s method is presented for solving the

incompressible heat flow problem in an inclined enclosure with an for different variables has made the staggered grid ap-
unknown melt/solid interface using primitive variables and collo- proach less attractive to the problems with complex two-
cated grids. The unknown melt/solid interface is solved simultane- and three-dimensional geometries and free boundaries [9].ously with all of the field variables by imposing the weighted melt-

The same is true to use the staggered grids in multigriding-point isotherm. In the finite-volume formulation of the continuity
implementation. An additional drawback is the slow con-equation, a modified momentum interpolation scheme is adopted

to enhance velocity/pressure coupling. During Newton’s iterations, vergent speed of the SIMPLE iterations, and its convergent
the ILU (0) preconditioned GMRES matrix solver is applied to solve speed is often mesh dependent. To amend this, Newton’s
the linear system, where the sparse Jacobian matrix is estimated

method could be used (e.g., Refs. [10, 13]). Although theby finite differences. Nearly quadratic convergence of the method
convergence rate of Newton’s method is quadratic andis observed. The robustness of the method is further enhanced

with the implementation of the pseudo-arclength continuation. The independent of the grid number used [10], complicated
effects of the Rayleigh number and gravity orientation on flow pat- Jacobian matrices need to be estimated, and the computer
terns and the interface are demonstrated. Bifurcation diagrams are memory required for the solution of Newton’s linear equa-
also constructed to illustrate flow transition and multiple steady

tions is much larger. Nevertheless, Newton-like approachesstates. Q 1996 Academic Press, Inc.
have proven to be robust and efficient, especially when
iterative matrix solvers are used [13].

In contrast to the staggered grid allocation is the non-1. INTRODUCTION
staggered or collocated grid arrangement, in which only

Two-phase flow problems are important in many solidi- one grid system is required. The SIMPLE-like approaches
fication processes, such as casting and crystal growth. In can also be used on collocated grids. However, to avoid
such systems, in addition to complicated geometry, simula- checkerboard pressure oscillation due to the velocity/pres-
tion could become quite challenging due to the strong sure decoupling, special formulations, such as the momen-
coupling of incompressible heat flow and the unknown tum interpolation [8, 14] and the pseudo-compressibility
melt/solid interface shape. Several numerical approaches [15] techniques, are necessary. Clearly, if the pressure/
(e.g., Refs. [1–7]) have been proposed to solve these prob- velocity decoupling can be avoided, the collocated alloca-
lems. Among them, they can be categorized, from the for- tion seems to be a good candidate for two- and three-
mulation point of view, by streamfunction/vorticity (c/g) dimensional free boundary problems, and even for
[2–3, 6–7] and primitive (UVP) variables [1, 4–5], and multigrid methods. Interestingly, to the UVP formulation
from solution point of view, by decoupled [2–6] and global Newton’s method has not been used based on the collo-
(coupled) [1, 7] iteration approaches. Although the c/g cated grids. On the other hand, a more complicated struc-
formulation could be easily implemented and leads to a ture of the Jacobian matrix due to momentum interpola-
smaller set of equations to solve, it is more difficult to be tion is expected, which could be difficult if an analytical
extended to three-dimensional problems. Jacobian is required.

For the UVP approach, because the pressure does not When an unknown melt/solid interface is included, an
appear in the equation of continuity, the velocity/pressure iteration scheme is also required to update the interface
decoupling could be quite troublesome and special treat- location. Two common ways to update the interface shape
ments are required. The well-known approach to overcome are through the isotherms [16–17] and energy flux balance
this poor linkage is the SIMPLE scheme and its variant on methods [6–7]. Again, no matter which approach is used,

the convergence characteristics of the two-phase problems
strongly rely on the iteration schemes, as well as the grid* Corresponding author. E-mail: lan@che730.che.ncu.edu.tw.
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arrangements. The easiest iteration scheme is through a
decoupled approach by putting the heat flow calculation in
inner iteration loops, while updating the interface through
outer loops. Unfortunately, this naive implementation usu-
ally leads to slow convergence, or even divergence. An
alternative to the decoupled successive approximation to
update the interface is global iteration, in which all the
unknown variables are iterated simultaneously, including
the field variables and the unknown interface. Although
the global approach for Finite element methods has been
adopted for years [1, 16, 18], it is still not widely used for
the finite difference and the finite volume methods (FVM).
Recently, Dandy and Leal [19] successfully applied New-
ton’s method to the finite difference solution of a rising
bubble, in which the shape and the flow field around it
were solved globally. Unfortunately, the construction of
the Jacobian matrix for the Newton’s scheme is still tedious
and error-prone. To make Newton’s method more attrac-
tive to free boundary problems for the finite difference or
finite volume methods, the best way is to use a numerical
Jacobian. This idea has been implemented successfully by
Lan [7] for solving a complicated floating molten zone
problem using the c/g formulation. In his calculations, the FIG. 1. The schematic of the two-phase heat flow problem.
CPU time for estimating the numerical Jacobian matrix
was much less (,20%) than that for the solution of New-

temperature TH is higher than the melting point (Tm) ofton’s linear equations. Therefore, Newton’s method using
the material inside, while the upper temperature TC isa numerical Jacobian provides an efficient way for compli-
lower. The other two sides are assumed adiabatic. Thecated problems. Again, the global approach based on the
melt/solid interface height h is unknown a priori and needsUVP formulation for FVM has not been reported. In fact,
to be solved simultaneously with the other field variables.because the pressure variable does not appear ex-
The physical properties of the material are assumed con-plicitly in the equation of continuity, while the interface
stant, while the melt is incompressible. The dimensionlessvariable not in the isotherm condition, zero diagonals in
variables are defined by scaling the length with the widththe Jacobian matrix may raise additional difficulties in the
W, velocity with am/W, and pressure with rma2

m/W 2, whereiterative matrix solution.
am is the thermal diffusivity and rm is the density of theIn the present report, a FVM/Newton’s scheme using
melt. The dimensionless temperature (u) is defined as u ;primitive variables on collocated grids and a numerical
(T 2 Tm)/(TH 2 Tm). For the convenience of illustration,Jacobian is proposed for solving an unknown interface
TC and TH are adjusted so that u is equal to 21 and 1 atproblem coupled with incompressible heat flow. The field
the upper and lower boundaries, respectively. With thevariables and the unknown interface are solved globally.
Boussinesq approximation [21], the conservation equa-The two-phase incompressible heat flow problem in an
tions in dimensionless form for two-dimensional steadyinclined enclosure is chosen as an example. Furthermore,
incompressible laminar flow of a Newtonian fluid in thewhe the problem encounters a limit or bifurcation point,
melt and heat conduction in the solid can be describedNewton’s method may still break down. To amend this, the
as follows:pseudo-arclength continuation [20] is also implemented.

Through the continuation, the flow transition and the bifur- Melt,
cation structure of the complicated two-phase problem can
be determined. ­u1

­x1 1
­u2

­x2 5 0, (1)

2. FORMULATION AND IMPLEMENTATION
­

­x1 Su1u1 2 Pr
­u1

­x1D1
­

­x2 Su2u1 2 Pr
­u1

­x2DThe steady-state two-phase heat flow problem studied
in this report in an inclined enclosure is shown in Fig. 1.
The height H is twice of the width W (aspect ratio

1
­P
­x1 1 RaPr u sin a 5 0, (2)

A 5 2). The temperature on two ends is fixed; the lower
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­

­x1 Su1u2 2 Pr
­u2

­x1D1
­

­x2 Su2u2 2 Pr
­u2

­x2D
1

­P
­x2 2 RaPr u cos a 5 0, (3)

­

­x1 Su1u 2
­u

­x1D1
­

­x2 Su2u 2
­u

­x2D5 0, (4)

Solid,

­

­x1 S ­u

­x1D1
­

­x2 S ­u

­x2D5 0, (5)

subject to the following boundary conditions:

u(x1, 0) 5 1; u(x1, 2) 5 21; (6)

­u(0, x2)/­x1 5 ­u(1, x2)/­x1 5 0; (7)

FIG. 2. Two-dimensional finite volume and labeling scheme.

and on all boundaries

3. FINITE VOLUME FORMULATION
u1 5 u2 5 0. (8)

3.1. Coordinate Transformation
At the melt/solid interface, assuming the thermal conduc- Due to the unknown and deformed interface shape h(x1),
tivities of both phases are the same, the thermal flux conti- body-fitted coordinates (j 1, j 2) are adopted. The algebraic
nuity is imposed as coordinate transformation for both melt and solid phases

are performed as follows:
­u/­num 5 ­u/­nus , (9) Melt,

x1 5 j 1(j 1), (12)as well as the melting-point isotherm

x2 5 j 2(j 2)h(j 1). (13)
u 5 0. (10)

Solid,

In the above equations, u1 and u2 are the Cartesian veloci- x1 5 j 1(j 1), (14)
ties in the x1- and x2- directions, respectively, and P is the

x2 5 h(j 1) 1 j 2(j 2)(2 2 h(j 1)), (15)pressure. The Prandtl and Rayleigh numbers are defined
as Pr ; nm/am and Ra ; bg(TH 2 Tm)W3/(nmam), where

where j 1(j 1) and j 2(j 2) are stretch function ranging fromnm is the kinematic viscosity, b is the thermal expansion
0 to 1 for adjusting grid distribution. A hyperbolic tangentcoefficient, and g is the gravity acceleration. The tilt angle
function with the following form, for example, for j 1, isa is defined in Fig. 1.

The measure of convective heat transfer is through the
j 1(j 1) 5 0.5 F1 1 tanh SB[(j 1 2 1)/(Nj 1 2 1) 2 0.5]

0.5B DG,Nu number as

(16)
Nu 5 E1

0

­u

­n
dx1, (11)

where B is a stretch constant and Nj 1 the number of control
volumes (CVs) in j 1 direction. The coordinate transforma-
tion defines the boundaries of the CVs. For example, thewhere n is the normal vector pointing toward the melt.

For the case without convection (purely conductive heat corner coordinates of each CV in physical space, as shown
in Fig. 2, are calculated according to the transformation,transfer), Nu 5 1.
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TABLE I

Form of Governing Equations

­

­j 1 (c1f 1 D1) 1
­

­j 2 (c2f 1 D2) 1 JSf 5 0

f c1 c2 D1 D2 Sf

1 U1 U2 0 0 0

u1 U1 U2
2

Aj
1

J
­`
­j j2

Pr
J SB1 j

­u1

­j j 1 A1
j g

j
1D 2

Pr
J SB2 j

­u1

­j j 1 A2
j g

j
1D

u2 U1 U2
2

Aj
2

J
­`
­j j2

Pr
J SB1 j

­u2

­j j 1 A1
j g

j
2D 2

Pr
J SB2 j

­u2

­j j 1 A2
j g

j
2D

0u U1 U2
2

1
J SB1 j ­u

­j jD 2
1
J SB2 j ­u

­j jD
Note. Ui 5 Ai

juj , Bij 5 Ai
kA j

k , g i
j 5 (­ui/­j k)Ak

j .

while the cell faces are straight lines between the corners. PrRa u[2sin(a)e1 1 cos(a)e2]. The advantages of using this
variable will be discussed later. The finite-volume methodThe cell faces can be represented by surface vectors, i.e.,

A1 and A2. For convenience, Dj 1 5 Dj 2 5 1, so that the simply integrates Eq. (17) over each CV in the computa-
tional domain (j 1, j 2). In fact, the integration performedCVs in the computational domain (j 1, j 2) have a volume

of 1. The values of variables in each CV are defined at the over the physical domain (x1, x2) is the same as that over
the computational domain after coordinate transforma-geometric center. Since some variables on the boundaries

are unknown, to make coding easier the CVs on the bound- tion, and DV 5 J. After applying the Gauss theorem, the
integration over each CV results in a flux balance equation,aries are also assigned, but their volume is zero. Highly

stretched grids toward the boundaries can be obtained
easily by simply increasing the value of B. Ie 2 Iw 1 In 2 Is 1 E

DV
SfdV 5 0, (19)

3.2. Finite Volume Integration
where Ii , i 5 (e, w, n, s), represents the fluxes of f acrossAfter the coordinate transformation, the governing
the faces of CV. Each of the fluxes Ii , is made of twoequations can be rewritten in a general conservation-law
distinct parts, namely a convective contribution IC (5Cif)form in (j 1, j 2) as
and a diffusive contribution ID (5Di). Both IC and ID are
approximated with the central difference scheme. Taking­

­j i (Cif 1 Di) 1 JSf 5 0, (17) Ie (for f 5 u) as an example,

IC
e 5 Uefe 5 (A1

j uj)efe (20)where J 5 (­x1/­j 1)(­x2/­j 2) 2 (­x1/­j 2)(­x2/­j 1). The
variable f and its associated coefficients are listed in Table

andI. For the convenience of representation, tensor notation
(summation on free indices) is adopted here. Also, in Table
I, Ai

j represents the x j component of the surface vector Ai

ID
e 5 2

1
Je
FB1j ­f

­j jG
e (21)

(see Fig. 2). More importantly, the driving forces due to
pressure gradients and the buoyancy force F are combined
and redefined through a new variable ` as P

1
A1

e ? PE
[B11

e (fE 2 fP) 1 B12
e (fne 2 fse)],

­`
­j j ; Fk

­xk

­j j 2
­P
­j j , (18)

where PE is the vector from points P to E. The definition
of Bij is given in Table I. A weighted linear interpolation
is used to calculate the face value:where Fk is the kth component of the body force F; F ;
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fe 5
Pe

PE
fE 1

eE

PE
fP, (22) uiP 5

1
aP
SO

nb
anbuinb 1 Sui

DVD, (24)

where Pe is the arclength between points P and e, while
where nb means the neighbor points. The face velocitieseE is that between points e and E. This weighted scheme
required for the continuity equation, e.g., for face e, isis particularly useful at boundaries where the CVs have
evaluated by taking a weighted average fro the above equa-zero volume. Values at the corners of the CV are obtained
tion except the source term:by taking a weighted average value from their nearby

nodal points.
The contribution of the source term can be approxi-

uie
5 uie 2 SSuiDV

aP
D

e
1 SSuiDV

aP
D

e
. (25)mated by

E
DV

SfdV 5 (Sf)PDV. (23) The overbar indicates the weighted average from adjacent
nodal points. The contravariant velocity required for the
mass fluxes now becomesThe implementation of the boundary conditions for the

velocity and temperature variables are straightforward by
introducing values or fluxes. However, care should be

Ui
e 5 (Ai

kuk)e P Ui
e 1 Cij

e FS­`
­j jD

e
2 S­`

­j jD
e
G, (26)taken for the pressure boundary condition on solid wall.

With a simple extrapolation of the pressure from interior
values to the solid boundaries [22–24], some spurious ve-

wherelocities could appear near the boundaries. These errors,
even though they are small, are still not trivial near the
static solution (no convection) when the inclined angle a is

Cij 5
Ai

k A j
k

aP
.almost zero, i.e., the traditional Rayleigh–Benard problem.

Taking a zero pressure gradient [14], i.e., ­P/­n 5 0, gives
a slightly better result. However, the small spurious veloci- Since the derivative values in Eq. (26) are approximated
ties still cannot be eliminated. In fact, since the flow is by the central difference, the cross-derivative terms in the
introduced by the source term in the momentum equations, bracket cancel, leaving the diagonal term alone. The con-
both pressure and nonpressure gradients there could in- travariant velocities at other faces are calculated in a simi-
duce flow. Therefore, the pressure on the boundaries is lar manner.
extracted from the extrapolated value of `. As a result, Clearly, from the above equation the pressure gradient
no spurious velocity is found in all of computation here. at face e used for the continuity equation is calculated by

a 1 2 d difference using points P and E. This is similar toUsing
­`
­n

5 0 gives a good result as well. In the implementa-
that in the staggered grid allocation that stores the velocity
variables at cell faces and the momentum equations aretion of

­`
­n

5 0, the skewness of the mesh is also considered,
approximated there. In fact, this is also the key idea of the

and the second-order backward difference is used. The Rhie–Chow scheme. However, in the original Rhie–Chow
detailed implementation of the pressure boundary condi- scheme, only the pressure gradient is introduced, while
tions is further described in Appendix. nonpressure source terms are excluded. As it is, some spu-

rious velocities are introduced caused by the slight unbal-
3.3. Momentum Interpolation

ance of source terms. It should be noticed that the source
terms are evaluated at cell faces for staggered grids. ToSince the pressure variable does not appear explicitly in

the continuity equation, the use of linearly interpolated better mimic the staggered grid allocation, all of the source
terms need to be included in the Rhie–Chow interpolation.velocity at the cell faces for collocated grids could lead to

the velocity/pressure decoupling or the so-called checker- Furthermore, due to the incompressibility nature, only
pressure gradients are meaningful to the solution. There-board oscillation of pressure. In order to amend this, the

idea of Rhie–Chow momentum interpolation scheme [14] fore, to obtain a unique solution, a pressure variable in
the melt is set to zero as a reference; any pressure in theis adopted. In other words, the velocity values required

for the continuity equation are interpolated from the mo- melt (not on boundaries) can be used as the reference.
Although one pressure at the lower left corner was re-mentum equations, rather than linearly from the adjacent

nodal values. To implement this, the formulation of the quired to be fixed in the staggered allocation to avoid the
breakdown of LU decomposition [25], it is found unneces-momentum equation for ui from the previous discretization

can be rewritten as sary here.
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3.4. Pseudo-Arclength Continuation

In order to enhance the robustness of the solution
scheme and to locate the solution from one to the other,
the pseudo-archlength continuation [20] is adopted. Also,
in many nonlinear systems, a limiting (turning) or a bifurca-
tion point in parameter space may exist. To such a point,
Newton’s method may fail to get a convergent solution
due to the singular Jacobian matrix. To overcome this,
continuation is usually helpful. The idea of continuation
is to trace the solution along a branch through an arclength
s by including an additional equation for the continuation
parameter p,

­xT

­s U
s0

? [x(s) 2 x(s0)] 1
­p
­s U

s0

[p(s) 2 p(s0)] 2 (s 2 s0) 5 0,

(27)

where x 5 (u, u1 , u2 , P, h)T and s 2 s0 is the step size
along the solution branch, where the arclength s ; i(x,
p)Ti2 . The direction vectors (­x/­sus0

and ­p/­sus0
) can be

FIG. 3. Sparse structure of the Jacobian matrix for NEQ 5 2414.computed by the backward finite differences from previous
two solution vectors along the same solution branch. To
start the continuation, two solutions for p and p 1 Dp are
necessary, where Dp is a small increment of p. In the pres- The components of the Jacobian matrix J̃, formed by ex-
ent study, the Raleigh number Ra or the tilt angle a is plicit differentiation as J̃ij ; ­fi/­yj , represent the sensitivity
used as the parameter. of the residual vector to perturbations in the solution vec-

tor. They are estimated by the forward difference as de-
4. SOLUTION SCHEME scribed next.

4.1. Newton’s Method 4.2. Jacobian Matrix

After the discretization for both governing and bound- Because pressure variable does not appear in the equa-
ary equations, as well as the continuation equation, a set tion of continuity, zeros may appear in the diagonal of the
of nonlinear algebraic equations can be obtained, Jacobian matrix. Particularly, the incomplete LU (ILU)

decomposition used in the preconditioning for the iterative
matrix solvers may fail because no pivoting is implementedf(y) ; 0, (28)
[25]. Therefore, variable ordering could be critical to the
success of the ILU preconditioner. However, in the presentwhere y 5 [x, Ra or a]T. In Eq. (28), one of the discretized
problem, if the velocity variables of each CV are orderedcontinuity equations is replaced by the constant pressure
first, the ordering of other variables does not affect muchcondition (simply set P 5 0 here) to ensure a unique solu-
on the performance of the preconditioning. For conve-tion. This nonlinear equation set is solved by Newton’s
nience, and also to achieve a tight band structure of themethod simultaneously for all variables. Starting from an
Jacobian matrix, the equations and unknowns are ordered,initial approximation to the unknown vector y0, successive
starting at j 2, j 1 5 1, in the order of appearance for u1 ,updates are constructed as
u2, P, and u in the melt, and then u in the solid. After all
field equations are ordered, the isotherm condition (foryn11 5 yn 1 dn11, (29)
interface variables h(x1)) is taken into account, followed
by the continuation equation for the parameter. The sparse

and the correction vector dn11 is the solution of the linear structure of the Jacobian matrix according to this ordering
equation set is shown in Fig. 3. The sparsity of this matrix is only about

0.6%. The vertical band entries on the right shows the
dependence of field variables on the interface variables,J̃dn11 5 2 f(yn). (30)
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FIG. 4. Three different meshes used for calculations: (a) 23 3 23 (melt), 23 3 13 (solid); (b) 33 3 33 (melt), 33 3 18 (solid); (c) 43 3 43 (melt),
43 3 23 (solid); Ra 5 5000 and a 5 f/2.

which is typical for free boundary problems [7, 16, 18]. A estimated either analytically or numerically. However, get-
ting an analytical Jacobian for a large and complicatedfull row at the bottom of the matrix is due to the arclength

continuation, but it cannot be seen from the figure. The problem is usually difficult and error-prone, even with the
help of symbolic differentiation, especially as complexitytopology of the Jacobian matrix provides useful informa-

tion for the design of preconditioners for iterative matrix increases. The finite difference approach is the easiest way
to compute the derivatives and has the advantage that onesolvers [26]. It is also useful for the identification of inde-

pendent columns for sparse finite difference evaluation, needs only the residual function f(y) as a ‘‘black box.’’
For a residual fector f(y) with dimension NEQ (the totalwhich will be discussed shortly.

Furthermore, because the interface variable h(x1) does number of equations), the simplest way to approximate J̃
is to use the forward difference:not appear explicitly in the equation, there is no entry

on the diagonal of the Jacobian matrix for the isotherm
condition. This causes the breakdown of the ILU(0) pre-
conditioning as well. To resolve this difficulty, h(x1) is

­fi

­yj
P

fi(y 1 «jej) 2 fi(y)
«j

, (32)
introduced to the isotherm condition as a weighting factor.
For example, for the nodal point i on the interface the
isotherm condition can be rewritten as where ej is the column j of the identity matrix and «j is a

suitable step-length. For a dense matrix, the calculation of
fh(j 1

i ) 5 (u(j 1
i , 1) 2 0)[h(j 1

i21)
(31)

Eq. (32) requires NEQ computations of the residual vector.
In other words, we need to calculate f(y 1 «jej) for each

1 h(j 1
i ) 1 h(j 1

i11)], 1 , i , Nj 1
. j. However, for a sparse matrix, each fi depends only on

a few xj . Therefore, we can take this fact to reduce the
number of residual evaluations [27–28]. For example, forThrough this modification, zeros could be avoided on

the main diagonal. In addition, the number of entries a case with 33 3 (33 1 18) grid points (or NEQ 5 4949),
if the last row (from the pseudo-arclength continuation)from the Eq. (31) is much less than that from the flux bal-

ance formulation [7]. To calculate the Jacobian compo- is excluded, the columns of J̃ can be grouped into 54 groups
that no two have entries in the same row. Accordingly,nents for this equation only the perturbations on

u(j 1
i , 1), h(j 1

i21), h(j 1
i ), and h(j 1

i11) need to be considered. only 54 residual evaluations are needed to estimate J̃. The
components of Jacobian from the pseudo-arclength contin-Other choices of the weighting factor are possible, but the

present formulation is found effective. uation are evaluated analytically. The small step size «j for
yj is estimated byJacobian matrix with a known sparse pattern could be
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«j 5 Ïu max(uyju, RTOLjuyju 1 ATOLj), (33) tioners. The principle is to find a pair of unit lower triangu-
lar L and upper triangular U matrices such that L 1 U
has the same structure as the original matrix. The commonwhere RTOLj and ATOLj are the relative and absolute
way to obtain ILU (0) is to perform Gaussian eliminationerror tolerances specified, and u is the unit roundoff error
and replace any fill-in by a zero during the process. Sinceof the computer. For all variables, RTOL and ATOL are
ILU (0) does not perform pivoting during factorization, itchosen in the order of 1 3 1026. The values ranging from
may fail due to zero diagonal elements in the Jacobian1022 to 1028 do not affect much the convergence character-
matrix as described previously. Furthermore, increasingistics. In this study, all calculation are performed in the
the dimension of Krylov subspace in GMRES could reduceHP9000/735 workstation with 80 DRAM.
the number of iterations to convergence, but the memory

4.3. Solution of Linear Equations space required is increased as well. The size of this subspace
is chosen to be 100, and the convergence criterion withSolving the linear Eq. (30) requires the use of an efficient
the L2 norm of 1029 is used.sparse matrix package. We have tested both direct matrix

[29] and iterative matrix solvers [26, 30–31]. Among them,
5. RESULTS AND DISCUSSIONILU (0) preconditioned GMRES method seems to be a

promising one from the consideration of CPU time, mem-
5.1. The Performance of the Scheme

ory, and robustness. GMRES is a technique introduced
by Saad and Schultz [30] for solving general large sparse The performance of the scheme is examined first through

mesh refinements. Figure 4 shows three different meshesnonsymmetric linear system of equations by minimizing
the 2-norm (Euclidean norm) of the residual vector. It has for Ra 5 5000 and a 5 f/2. Through the stretch function,

more finite volumes are generated near the boundariesalso been used widely in fluid flow computation [7, 13, 25].
With a suitable preconditioner, its efficiency and conver- to enhance the accuracy of calculations. The numbers of

unknowns are 2414, 4949, and 8384, respectively, forgence could be enhanced significantly [13, 25, 32].
The incomplete LU decomposition without fill-in, ILU meshes (a) to (c). The calculated flow patterns and the

interface shape are illustrated in Fig. 5(a). As shown, they(0) [33], is one of the simplest and most popular precondi-

FIG. 5. Calculated results based on the meshes in Fig. 4 for (a) Ra 5 5000, (b) Ra 5 20000, and (c) Ra 5 105; a 5 f/2. Some calculated values
are listed in Table II.
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TABLE II

Comparison of Some Calculated Values Based on Different Meshes (from Fig. 5)

Ra 5 5 3 103 Ra 5 2 3 104 Ra 5 1 3 105

Mesh Nu hmin hmax ucumax Nu hmin hmax ucumax Nu hmin hmax ucumax

(a) 1.583 1.192 1.448 3.551 2.596 1.381 1.701 6.141 4.661 1.502 1.862 10.33
(b) 1.580 1.194 1.445 3.580 2.568 1.389 1.694 6.226 4.494 1.531 1.852 10.45
(c) 1.579 1.196 1.444 3.589 2.557 1.391 1.691 6.264 4.426 1.539 1.847 10.55

are all very close to one another. Even at higher Ra num- 2. In other words, second-order accuracy of the scheme
is retained.bers, as shown in Figs. 5 (b)–(c), the calculated results are

not affected by the mesh much. The calculated Nu, the The detailed CPU time used in various phases of the
solution and the iteration numbers required for conver-minimum (hmin) and maximum (hmax) interface heights,

and the maximum stream function ucumax are listed in Table gence in the calculations at various Ra numbers are sum-
marized in Table III. In the column for iteration number,II for further comparison. Furthermore, from the results

of different mesh sizes, mesh-independent solutions can the numbers in the parenthesis are the iteration numbers
of GMRES at each Newton’s iteration. The memory re-be approximated from the Richardson extrapolation for

second-order schemes. Solution errors on various meshes quired is listed in the last column; u 5 1, h(x1) 5 1, and
u1 5 u2 5 P 5 0 are used as the initial guess for allcan then be estimated by subtracting the mesh-indepen-

dent solutions. If we plot the estimated relative errors of cases. As shown, the computational effort for a numerical
Jacobian is about half of that for Newton’s linear equationthe calculated Nu (ENu%) as a function of grid size using

a logarithmic scale, the order of the present method can at smaller Ra numbers. However, as the number of un-
knowns is increased, the iteration numbr required forbe estimated. Taking Ra 5 104 and 105 as an example, as

shown in Fig. 6, both curves indicate a slope of around GMRES increases; the increase is about twice from meshes

FIG. 6. Estimated errors of Nu as a function of grid sizes for Ra 5 FIG. 7. Convergence of Newton’s iterations for various Ra numbers;
a 5 f/2.104 and 105; a 5 f/2.
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TABLE III

Comparison of Performance of Newton’s Method on Different Meshes; a 5 f/2

Meshes CPU(s) for CPU(s) for CPU(s) for Memory
(NEQ) Ra Nu residual Jacobian GMRES Number of Newton/GMRES iterations (Mbytes)

23 3 (23 1 13) 0 1.0000 0.0300 4.982 5.270 2/63 (27,36)
(2414) 500 1.0199 0.0300 9.537 16.72 5/214 (40,44,44,42,44)

1000 1.0731 0.0300 10.67 20.23 6/261 (40,43,44,44,45,45) 5.02
3000 1.3533 0.0300 12.64 25.19 7/328 (46,42,45,48,47,47,53)
5000 1.5831 0.0400 12.66 26.76 7/352 (55,44,51,51,50,49,52)

33 3 (33 1 18) 0 1.0000 0.0500 11.06 16.26 2/96 (43,53)
(4949) 500 1.0200 0.0700 24.28 57.43 6/350 (57,61,57,56,62,57)

1000 1.0734 0.0700 24.37 60.60 6/367 (56,61,63,60,64,63) 10.39
3000 1.3524 0.0700 27.71 72.25 7/438 (58,58,65,65,65,66,61)
5000 1.5799 0.0800 31.06 86.83 8/527 (62,58,71,68,66,69,66,67)

43 3 (43 1 23) 0 1.0000 0.1200 20.74 42.27 2/133 (60,73)
(8384) 500 1.0200 0.1200 45.06 161.5 6/505 (75,87,85,82,88,88)

1000 1.0735 0.1300 45.78 163.0 6/510 (76,81,89,84,88,92) 17.74
3000 1.3521 0.1200 51.91 201.6 7/603 (70,73,85,93,91,91,100)
5000 1.5786 0.1400 58.18 250.4 8/795 (76,83,90,97,91,92,97,169)

(a) to (c). Accordingly, to the finest mesh the computa- numbers, the upwind scheme may be more robust. How-
ever, for the cases considered, the use of upwind degradestional effort for GMRES is about four times that for a

Jacobian. It should be pointed out that, due to the coupling the accuracy, but it does not improve much the perfor-
mance of GMRES (the difference is less than five itera-of the pressure and velocities in the equation of continuity

through momentum interpolation, the number of groups tions).
The convergence history on the Ly norm of the correc-for forming the Jacobian in all cases is 54, which is about

60% more than that for the c/g formulation. This increases tion vector d is further illustrated in Fig. 7. As shown, nearly
quadratic convergence of Newton’s iterations is obtainedthe computation time substantially. Also, if a better initial

guess is used, the CPU time required for cases with higher when the solution is achieved for all cases. When the flow
is absent (Ra 5 0), only one Newton’s iteration is required.Ra numbers could be reduced significantly. The memory

required is linearly proportional to NEQ. For higher Ra For Ra greater than 5000, a better initial guess is necessary.

FIG. 8. Comparison of flow patterns, isotherms, and interface shape from primitive variable (UVP) and streamfunction/vorticity (c/g) schemes:
(a) Ra 5 5000, (b) Ra 5 20000, (c) Ra 5 105; a 5 f/2. The solid line is for the UVP scheme and the dashed-line is for the c/g scheme. Some
calculated values are listed in Table IV.
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TABLE IV

Comparison of Some Calculated Values from UVP and c/g Approaches (from Fig. 8)

Ra 5 5000 Ra 5 20000 Ra 5 100000

Methods Nu hmin hmax ucumax Nu hmin hmax ucumax Nu hmin hmax ucumax

UVP 1.579 1.196 1.444 3.589 2.257 1.391 1.691 6.264 4.426 1.539 1.847 10.55
c/g 1.582 1.202 1.448 3.649 2.256 1.398 1.698 6.401 4.408 1.550 1.848 10.90

In Fig. 7, the solutions of Ra 5 5000 and 20000 are used first; e.g., let u 5 (x1)3(x2)4, and then substitute this solution
into the governing equations to generate a source term.as initial guesses for Ra 5 20000 and 105, respectively.
Artificial boundary conditions are also obtained from the

5.2. Validation of the Method solution form. In other words, the proposed solution now
becomes the analytical solution of the new governing equa-The validation of a numerical method is usually difficult,
tions with an artificial source term and boundary condi-particularly when its benchmark solution is not available.
tions. The FVM solution of this new set of partial differen-Three approaches are used to assure the correctness of the
tial equations is then compared with the proposednumerical approach. First of all, the calculated results for
analytical solution. Again, excellent agreement is found.Ra 5 5000, 20000, and 105 (a 5 f/2) using mesh (c) are

compared with those obtained from the c/g formulation
5.3. Test Examples

[7]. As shown in Fig. 8, they are in excellent agreement
for streamlines, isotherms, and the melt/solid interface. The above calculations can be extended to the systematic

study of flow bifurcation and transition. By using theSome calculated results are listed in Table IV for further
comparison. Since pressure is removed from the c/g for- pseudo-arclength continuation, one could calculate the so-

lutions from one to the other. Particularly, the method ismulation, its number of unknowns is less. Furthermore,
the number of groups for Jacobian estimation is also re- still robust even when a limiting point is encountered.

Figure 9 shows the bifurcation diagram for Ra 5 2000. Asduced to 33. Therefore, the CPU time required for the
c/g approach takes only one-half that for the primitive shown the solution is symmetric with respect to a 5 0. A

no-flow solution (Nu 5 1) is found for a 5 0, 6f. Atvariables. Therefore, for two-dimensional cases the c/g
formulation still outperforms the UVP one. Nevertheless, a 5 0, the configuration becomes a typical Rayleigh–

Benard problem. Since the lower boundary is hotter and,as pointed out previously, its extension to three-dimen-
sional problems is much more difficult. thus, the melt is lighter there, the top-heavy arrangement

is potentially unstable. However, because Ra is not largeSecond, further validation is performed by comparing
our calculated results with the benchmark solutions for the enough, the flow is inhibited by its viscosity leading to a

static solution (Nu 5 1). At a 5 6f, the thermal configura-heated square problem [34–35]; the interface is fixed. The
comparison is listed in Table V. As shown, the calculated tion is physically stable; the melt is on the top with respect

to the gravity. Since the lateral temperature gradient isresults are still in excellent agreement with the benchmark
solutions up to Ra 5 1 3 106. Second-order accuracy of zero, no flow is induced. Heat transfer in both cases are

through conduction alone. However, as the system is tilted,the present scheme is retained for this problem as well.
Finally, a special debugging procedure [36] is used to check natural convection is induced due to lateral temperature

gradients. As a result, heat transfer is enhanced leading tothe code. In brief, a proposed analytical solution is assumed

TABLE V

Comparison of Calculated Nu with Benchmark Solutions [34, 35] for the Heated Square Problem

Mesh Davis and Hortmann
Ra 23 3 23 33 3 33 43 3 43 63 3 63 83 3 83 Jones [34] et al. [35]

103 1.1163 1.1172 1.1175 1.1177 1.1179 1.118 —
104 2.2551 2.2493 2.2472 2.2457 2.2453 2.243 2.2448
105 4.6521 4.5812 4.5545 4.5351 4.5293 4.519 4.5216
106 9.3914 9.2031 9.0477 8.9194 8.8759 8.800 8.8251
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FIG. 9. Bifurcation diagram for Ra 5 2000. Typical flow patterns and isotherms are also included.

the increase of the Nu number. The maximum Nu number state at a 5 0. We also highlight the isola, and the associ-
ated flow patterns and isotherms (a, b, and c) are alsooccurs at the tilted angle about 6f/4, where the convection

is expected to be the strongest. illustrated. Apparently, its flow structure changes and be-
comes two-cell. As shown, for the points c and h, the twoWhen the Ra number is increased to 3000, as shown in

Fig. 10, multiple steady states appear near a 5 0. For flow cells are symmetrical with respect to the centerline.
More interestingly, the flow directions of c and h are justexample, at a 5 0, there are three solutions: b, b9, and

the static solution (Nu 5 1). Typical flow patterns and the opposite. Accordingly, the interface for c becomes con-
cave, while that for h convex. Again, the static solutionisotherms along the solution branch are also illustrated in

the same figure. More interestingly, the calculated solu- (on the isola) is not stable, and the solutions c, f, and f9
are the more stable states. From the exchange of stabilitytions for b and b9 are mirror images of each other; they

have the same Nu number as well. In fact, at a 5 0, because at simple turning points, h seems to be an unstable solution.
However, without a careful examination of its eigenvalues,the top-heavy static solution is not a unique state any more,

it becomes unstable. A small disturbance could turn this the conclusion cannot be drawn. The two-cell flow struc-
ture of the tilted cases, e.g., a and b, are asymmetrical. Instate to a more stable state b or b9, depending on the

perturbation direction. In other words, solutions b and b9 fact, below the turning point (near point g) along the main
solution branch, the flow structure is two-cell as well. Forare physically stable. Because stability exchanges at simple

limiting points [37], in Fig. 10 the solution branch (including example, the flow pattern of g consists of a larger cell, and
a smaller cell near the lower right corner. When Ra 5the static solution) below two limiting points is not stable.

Far away from the zero tilt angle, no multiple steady states 10000 in Fig. 12, the bifurcation diagram becomes even
more complicated near a 5 0. The size of isola also in-are observed and the solution is stable.

Further, increasing the Ra number could lead to more creases, and the solution multiplicity increases as well.
If we use the previous calculations at a 5 0 as startingcomplicated solution structures near a 5 0. As shown in

Fig. 11, in which Ra 5 7000, in addition to the main solution points, the bifurcation diagram using the Ra number as
the parameter can be constructed easily. To distinguishbranch from a 5 2f to f, an isola appears near the static
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FIG. 10. Bifurcation diagram for Ra 5 3000.

the symmetric solutions, we redefine the Nu by subtracting that the presence of the melt/solid interface could destabi-
lize the static. A similar conclusion was drawn by Changit by 1 (the static solution) and adding a minus sign to the

subtracted value when the flow cell (choosing the left cell and Brown [1] for the axisymmetrical case. Furthermore,
because of the effect of the melt/solid interface, the flowfor two-cell structures) is counterclockwise in direction.

With this newly defined Nu number, the bifurcation dia- structure could become even more complicated as the Ra
number increases.gram is constructed (Fig. 13) and some typical flow patterns

are illustrated. As shown, there are four critical Ra num- Beyond Rac2 , the flow becomes two-cell. However, the
solution branches for c and d are not perfectly symmetricalbers (Rac1 5 2301, Rac2 5 6577, Rac3 5 8845, and Rac4 5

8863) in this diagram. For the traditional Raleigh–Benard to each other any more, due to the interface; the interface
for c is concave, while that for d is convex. More interest-problem, the width goes to infinity. In such a case, the Rac1

is 1708. However, as the aspect ratio increases, the Rac1 ingly, beyond Rac3 or Rac4 new solution branches come
out from the symmetrical ones. The flow structure for theincreases [38–39]. For the fixed boundary case with the

aspect ratio of 1 for the melt region, the Rac1 is slightly new solution branches happens to be asymmetrical two-
cell, such as e and f, or g and h. Furthermore, the solutionshigher, being 2585 [38–39]. At the first bifurcation point,

in addition to the static state, the flow bifurcates into two e and f, or g and h, have the same Nu number, because they
are perfectly symmetrical to each other. In other words,symmetrical solution branches, i.e., the supercritical pitch-

fork bifurcation, and this is similar to the fixed boundary beyond Rac4 , there are nine solutions (including the static
solution). Similar bifurcation structure was reported forcase [38]. Across Rac1 , the static solution changes its stabil-

ity and becomes unstable, while the other two solution Lapwood convection [40].
The bifurcation diagram on the Nu 2 a plane for a ?branches are stable. Also, comparing the values of Rac1 for

single-phase (2585) and two-phase (2301) systems suggests 0 can be constructed easily as well. In brief, if the tilt angle
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FIG. 11. Bifurcation diagram for Ra 5 7000. A small region near a 5 0 is highlighted for the illustration of solutions a, b, c, and h. The dashed-
line indicates a different solution branch (an isola).

a is slightly greater than 0, except the first lower branch,
the other branches become isolated, while the critical Ra
numbers shift backward. The imperfect bifurcation can be
understood by comparing the buckling of an initially bent
rod. With an increasing load (like the Ra number), the
preferred bending direction (like the flow direction) is de-
termined by the initial bend. For example, with a small a,
the counterclockwise flow (the lower solution branch) is
stable and dominant with the increasing Ra number from
Ra 5 0. The stable isolated solutions (clockwise flow) is
possible at larger Ra numbers, but they need enough per-
turbation from the initial counterclockwise flow. Further-
more, from the bifurcation results of Figs. 9–13, a cusp
catastrophe [41] in the Ra 2 a bifurcation plane can be
constructed easily. Furthermore, because of the robustness
of the present scheme, no trouble is encountered in con-
structing the whole bifurcation diagrams using Ra or a as
the parameter.

Although the illustrated examples so far are only two-
dimensional, extension of our scheme to three-dimensional
problems is quite straightforward. We are currently FIG. 12. Bifurcation diagram for Ra 5 10000. The dashed-line indi-

cates a different solution branch.applying the scheme to the three-dimensional modeling of
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FIG. 13. Bifurcation diagram for a 5 0. The arrows indicate the critical Ra numbers.

Bridgman crystal growth. Fluid flow, heat and mass trans- APPENDIX
fer, and the growth interface are computed simultaneously

The implementation of the pressure boundary condi-by Newton’s method. Some preliminary results can be
tions is further described here. Take a wall cell, labeledfound elsewhere [42].
by W as an example. As shown in Fig. 2, the cell P is next
to it, while the cell E is next to the cell P. Because the cell6. CONCLUSIONS
volume is zero at the wall, the points W and w are at the
same point, i.e., Ww 5 0. The linear extrapolation of theThe numerical solution of the two-phase incompressible

heat flow in an inclined enclosure with an unknown melt/ variable ` from the cells E and P to the wall cell at W can
be represented assolid interface by a FVM/Newton’s method using primitive

variables and collocated grids is proposed. The velocity/
pressure coupling is enhanced through a modified Rhie–

`W 2 `P 5
WP

PE
(`P 2 `E). (A1)Chow scheme. During Newton’s iterations, the Jacobian

is estimated numerically, while the linear equations are
solved by the ILU (0) preconditioned GMRES solver.
With the implementation of the pseudo-arclength continu- With the definition of ` in Eq. (18), the above equation

can be written in terms of pressure and body force:ation, this approach proved to be robust and efficient;
nearly quadratic convergence of the method is observed.
The solution is also validated by the streamfunction/vortic- 2Fkuw(xk

P 2 xk
W) 1 (PP 2 PW)

(A2)ity solution, and they are in excellent agreement. Flow
transition and bifurcation of the problem are illustrated

5
WP

PE
[2Fkue(xk

E 2 xk
P) 1 (PE 2 PP)].

as well.
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